Courses Offered: SCJP SCWCD Design patterns EJB CORE JAVA AJAX Adv. Java XML STRUTS Web services SPRING HIBERNATE  

       

PYSPARK Course Details
 

Subcribe and Access : 5200+ FREE Videos and 21+ Subjects Like CRT, SoftSkills, JAVA, Hadoop, Microsoft .NET, Testing Tools etc..

Batch Date: Nov 30th & Dec 1st @7:00PM

Faculty: Mr. N. Vijay Sunder Sagar (17+ Yrs Of Exp,..)

Duration: 10 Weekends Batch

Venue :
DURGA SOFTWARE SOLUTIONS,
Flat No : 202, 2nd Floor,
HUDA Maitrivanam,
Ameerpet, Hyderabad - 500038

Ph. No: +91 - 9246212143, 80 96 96 96 96



Syllabus:

PYSPARK

I ) PYSPARK INTRODUCTION

  • What is Apache Spark?
  • Why Pyspark?
  • Need for pyspark
  • spark Python Vs Scala
  • pyspark features
  • Real-life usage of PySpark
  • PySpark Web/Application
  • PySpark - SparkSession
  • PySpark – SparkContext
  • PySpark – RDD
  • PySpark – Parallelize
  • PySpark – repartition() vs coalesce()
  • PySpark – Broadcast Variables
  • PySpark – Accumulator

II) PYSPARK - RDD COMPUTATION

  • Operations on a RDD
  • Direct Acyclic Graph (DAG)
  • RDD Actions and Transformations
  • RDD computation
  • Steps in RDD computation
  • RDD persistence
  • Persistence features

II) PERSISTENCE Options:

  • 1) MEMORY_ONLY
  • 2) MEMORY_SER_ONLY
  • 3) DISK_ONLY
  • 4) DISK_SER_ONLY
  • 5) MEMORY_AND_DISK_ONLY

III) PYSPARK - CORE COMPUTING

  • Fault Tolerence model in spark
  • Different ways of creating a RDD
  • Word Count Example
  • Creating spark objects(RDDs) from Scala Objects(lists).
  • Increasing the no of partitons
  • Aggregations Over Structured Data:
  • reduceByKey()

IV) GROUPINGS AND AGGREGATIONS

  • i) Single Grouping and Single Aggregation
  • ii) Single Grouping and multiple Aggregation
  • iii) multi Grouping and Single Aggregation
  • iv) Multi Grouping and Multi Aggregation
  • Differences b/w reduceByKey() and groupByKey()
  • Process of groupByKey
  • Process of reduceByKey
  • Reduce() function
  • Various Transformations
  • Various Built-in Functions

V) Various Actions and Transformations:

  • countByKey()
  • countByValue()
  • sortByKey()
  • zip()
  • Union()
  • Distinct()
  • Various count aggregation
  • Joins
  • -inner join
  • -outer join
  • Cartesian()
  • Cogroup()
  • Other actions and transformations

VI) PySpark SQL - DataFrame

  • Introduction
  • Making data Structured
  • Case Classes
  • ways to extract case class objects
  • 1) using function
  • 2) using map with multiple exressions
  • 3) using map with single expression
  • Sql Context
  • Data Frames API
  • DataSet API
  • RDD vs DataFrame vs DataSet
  • PySpark – Create a DataFrame
  • PySpark – Create an empty DataFrame
  • PySpark – Convert RDD to DataFrame
  • PySpark – Convert DataFrame to Pandas
  • PySpark – show()
  • PySpark – StructType & StructField
  • PySpark – Row Class
  • PySpark – Column Class
  • PySpark – select()
  • PySpark – collect()
  • PySpark – withColumn()
  • PySpark – withColumnRenamed()
  • PySpark – where() & filter()
  • PySpark – drop() & dropDuplicates()
  • PySpark – orderBy() and sort()
  • PySpark – groupBy()
  • PySpark – join()
  • PySpark – union() & unionAll()
  • PySpark – unionByName()
  • PySpark – UDF (User Defined Function)
  • PySpark – map()
  • PySpark – flatMap()
  • pyspark – foreach()
  • PySpark – sample() vs sampleBy()
  • PySpark – fillna() & fill()
  • PySpark – pivot() (Row to Column)
  • PySpark – partitionBy()
  • PySpark – ArrayType Column (Array)
  • PySpark – MapType (Map/Dict)

VII) PySpark SQL Functions

  • PySpark – Aggregate Functions
  • PySpark – Window Functions
  • PySpark – Date and Timestamp Functions
  • PySpark – JSON Functions
  • PySpark – Read & Write JSON file

VIII) PySpark Built-In Functions

  • PySpark – when()
  • PySpark – expr()
  • PySpark – lit()
  • PySpark – split()
  • PySpark – concat_ws()
  • Pyspark – substring()
  • PySpark – translate()
  • PySpark – regexp_replace()
  • PySpark – overlay()
  • PySpark – to_timestamp()
  • PySpark – to_date()
  • PySpark – date_format()
  • PySpark – datediff()
  • PySpark – months_between()
  • PySpark – explode()
  • PySpark – array_contains()
  • PySpark – array()
  • PySpark – collect_list()
  • PySpark – collect_set()
  • PySpark – create_map()
  • PySpark – map_keys()
  • PySpark – map_values()
  • PySpark – struct()
  • PySpark – countDistinct()
  • PySpark – sum(), avg()
  • PySpark – row_number()
  • PySpark – rank()
  • PySpark – dense_rank()
  • PySpark – percent_rank()
  • PySpark – typedLit()
  • PySpark – from_json()
  • PySpark – to_json()
  • PySpark – json_tuple()
  • PySpark – get_json_object()
  • PySpark – schema_of_json()
  • Working Examples

IX) Pyspark External Sources

  • Working with sql statements
  • Spark and Hive Integration
  • Spark and mysql Integration
  • Working with CSV
  • Working with JSON
  • Transformations and actions on dataframes
  • Narrow, wide transformations
  • Addition of new columns, dropping of columns ,renaming columns
  • Addition of new rows, dropping rows
  • Handling nulls
  • Joins
  • Window function
  • Writing data back to External sources
  • Creation of tables fromDataframes (Internal tables, Temporary tables)

X) DEPLOYMENT MODES

  • Local Mode
  • Cluster Modes(Standalone , YARN

XI) PYSPARK APLLICATION

  • Stages and Tasks
  • Driver and Executor
  • Building spark applications/pipelines
  • Deploying spark apps to cluster and tuning
  • Performance tuning

PySpark Streaming Concepts

Integration with Kafka

PySpark-mllib