Courses Offered: SCJP SCWCD Design patterns EJB CORE JAVA AJAX Adv. Java XML STRUTS Web services SPRING HIBERNATE  

       

FULL STACK DATA SCIENCE with Artificial Intelligence Course Details
 

Subcribe and Access : 5200+ FREE Videos and 21+ Subjects Like CRT, SoftSkills, JAVA, Hadoop, Microsoft .NET, Testing Tools etc..

Batch Date: Sept 15th @9:00PM

Faculty: Mr. N. Vijay Sunder Sagar (20+ Yrs of Exp,..)

Duration : 5 Months

Venue :
DURGA SOFTWARE SOLUTIONS,
Flat No : 202, 2nd Floor,
HUDA Maitrivanam,
Ameerpet, Hyderabad - 500038

Ph.No: +91 - 8885252627, 9246212143, 80 96 96 96 96

Syllabus:

FULL STACK DATA SCIENCE
with Artificial Intelligence
(Generative AI & Agentic AI)

Module 1 : Data Science Introduction

  • What is Data Science
  • Why Data Scientists are in demand
  • The growing need for Data Science
  • Data Science Skills
  • Data Science Use Cases
  • Data Acquisition
  • Sources of data
  • Data Categorization
  • Types of Data
  • Techniques
  • Data formats
  • Data Quantity
  • Data Quality
  • Resolution Techniques
  • Data Transformation
  • File format Conversions
  • Datascience Life Cycle

Module 2: Python for Data Science

  • Python Datatypes
  • Python variables
  • Python Conditions & loops
  • Python Functions basics
  • Python Lambda
  • Python Lists
  • Python Tuples
  • Python sets
  • Python Dictionaries
  • Python File Handling
  • Jupyter Notebook setup
  • Google Colab

Module 3: Numpy : Python for Data Analysis (Numerical Data)

  • Introduction to Numpy
  • Numpy Arrays
  • Numpy Array Indexing
  • 2-D and 3Dimensional Arrays
  • Numpy Mathematical operations
  • Numpy Flattening and reshaping
  • Numpy Horizontal and Vertical Stack
  • Numpy linespace and arrange
  • Numpy asarray and Random numbers
  • Numpy iterations and Transpose
  • Numpy Array Manipulation
  • Numpy Linear Algebra
  • Numpy String Functions

Module 4: Pandas : Python for Data Analysis

  • Introduction to Pandas
  • Creating Pandas Series
  • Creating Data Frames
  • Pandas Data Frames from dictionaries
  • Pandas Data Frames from list
  • Pandas Data Frames from series
  • Pandas Data Frames from CSV, Excel
  • Pandas Data Frames from JSON
  • Pandas Data Frames from Databases
  • Extracting rows using loc and iloc
  • Pandas dealing with rows and columns
  • Pandas indexing and slicing
  • Pandas Groupings and Aggregations
  • Pandas Merging and concatenating

Module 5: Matplotlib : Python for Data Visualizations

  • Introduction to matplotlib
  • Installing matplotlib
  • Generating graphs
  • Normal plottings
  • Generating Bargraphs
  • Histograms
  • Scatter plots
  • Stack plots
  • Pie plots
  • Matplotlib working examples

Module 6: Statistical methods for Datascience

  • Types of Statistics
  • Descriptive Statistics
  • Inferential Statistics
  • Central Tendency Measures
  • Mean,Median,Mode
  • The Story of Average
  • Dispersion Measures
  • Variance,Range
  • Data Distributions
  • Sampling
  • Types of Sampling
  • What is Hypothesis testing
  • Confidence Level
  • Correlation Analysis
  • Uses of Correlation
  • Continuous variables
  • Categorical variables

Module 7: Machine Learning

  • Introduction to Machine Learning
  • Areas of Implementation of Machine Learning
  • Supervised vs Unsupervised Learning
  • Implement Machine Learning Algorithms
  • Linear Regression
  • Non-Linear Regression
  • Logistic Regression
  • Decision Trees
  • Random Forest
  • Support Vector Machines
  • Naïve’s Bayes Classification
  • K Nearest Neighbors
  • Clustering Technique
  • Partitioning Method
  • K-Means Clustering
  • Hierarchical Clustering
  • Recommender Systems
  • Pattern Matching A
  • FP-Growth Algorithm
  • Collaborative Filering

Module 8: Time Series Analysis and Forecasting

  • Time Series Components
  • Stationarity Testing (ADF)
  • ARIMA Model Parameters
  • Forecasting with Prophet
  • Forecast Error Metrics
  • Backtesting Techniques
  • Trend Visualization Methods
  • Confidence Interval Analysis
  • External Variable Integration
  • Model Selection Strategies

Module 9: MLOps Fundamentals

  • MLOps Introduction
  • CI/CD for ML
  • MLflow Model Trackin
  • Model Drift Monitoring
  • Model Lifecycle Management

Module 10: BigData - Pyspark

  • Introduction to Apache Spark
  • Why PySpark
  • Need for Pyspark
  • In Memory Computing – Spark
  • PySpark benefits to Professionals
  • Components of Spark
  • Spark Execution Architecture
  • Pyspark sql
  • Pyspark practical implementation

Module 11: NLP and Text Mining

  • Overview of Text Mining
  • Need of Text Mining
  • Natural Language Processing (NLP) in Text Mining
  • Applications of Text Mining
  • OS Module
  • Reading, Writing to text and word files
  • Setting the NLTK Environment
  • Accessing the NLTK Corpora

II) Extracting, Cleaning and preprocessing Text

  • Tokenization
  • Frequency Distribution
  • Different Types of Tokenizers
  • Bigrams, Trigrams & Ngrams
  • Stemming
  • Lemmatization
  • Stop words
  • POS Tagging
  • Named Entity Recognition
  • Syntax Trees
  • Chunking
  • Chinking
  • Context Free Grammars (CFG)
  • Automating Text Paraphrasing

Module 11: Deep Learning

  • What is Deep Learning?
  • Machine Learning vs. Deep Learning
  • Use cases of Deep Learning
  • Human Brain vs. Neural Network
  • What is Perceptron?
  • Learning Rate
  • Activation Function
  • Single Layer Perceptron

Module 12: TensorFlow 2.0 :

  • Introduction to TensorFlow 2.x
  • Installing TensorFlow 2.x
  • Defining Sequence model layers
  • Activation Function
  • Layer Types
  • Model Compilation
  • Model Optimizer
  • Model Loss Function
  • Model Training
  • Digit Classification using Simple Neural Network in TensorFlow 2.x
  • Improving the model
  • Adding Hidden Layer
  • Adding Dropout
  • Using Adam Optimizer

Module 13: Convolution Neural Network

  • Image Classification Example
  • What is Convolution
  • Convolutional Layer Network
  • Convolutional Layer
  • Filtering
  • ReLU Layer
  • Pooling
  • Data Flattening
  • Fully Connected Layer
  • Predicting a cat or a dog
  • Saving and Loading a Model
  • Face Detection using OpenCV

Module 14: Boltzmann Machine & Autoencoder

  • What is Boltzmann Machine (BM)?
  • Identify the issues with BM
  • Why did RBM come into the picture?
  • Step-by-step implementation of RBM
  • Distribution of Boltzmann Machine
  • Understanding Autoencoders
  • Architecture of Autoencoders
  • Brief on types of Autoencoders
  • Applications of Autoencoders

Module 15: Generative Adversarial Network (GAN)

  • Which Face is Fake?
  • Understanding GAN
  • What is Generative Adversarial Network?
  • How does GAN work?
  • Step by step Generative Adversarial Network implementation
  • Types of GAN
  • Recent Advances: GAN

Module 16: Emotion and Gender Detection

  • Where do we use Emotion and Gender Detection?
  • How does it work?
  • Emotion Detection architecture
  • Face/Emotion detection using Haar Cascade
  • Implementation on Colab

Module 17: Introduction to RNN and GRU

  • Issues with Feed Forward Network
  • Recurrent Neural Network (RNN)
  • Architecture of RNN
  • Calculation in RNN
  • Backpropagation and Loss calculation
  • Applications of RNN
  • Vanishing Gradient
  • Exploding Gradient
  • What is GRU?
  • Components of GRU
  • Update gate
  • Reset gate
  • Current memory content
  • Final memory at current time step

Module 18: LSTM

  • What is LSTM?
  • Structure of LSTM
  • Forget Gate
  • Input Gate
  • Output Gate
  • LSTM architecture
  • Types of Sequence-Based Model
  • Sequence Prediction
  • Sequence Classification
  • Sequence Generation
  • Types of LSTM
  • Vanilla LSTM
  • Stacked LSTM
  • CNN LSTM

Module 19: OpenCV

  • Why is OpenCV used?
  • What is OpenCV
  • Applications
  • Demo: Build a Criminal Identification and Detection App

Module 20: Generative AI

  • What is Generative AI?
  • Generative AI Evolution
  • Differentiating Generative AI from Discriminative AI
  • Types of Generative AI
  • Generative AI Core Concepts
  • LLM Modelling Steps
  • Transformer Models: BERT, GPT, T5
  • Training Process of an LLM Model like ChatGPT
  • The Generative AI development lifecycle
  • Overview of Proprietary and Open Source LLMs
  • Overview of Popular Generative AI Tools and Platforms
  • Ethical considerations in Generative AI
  • Bias in Generative AI outputs
  • Safety and Responsible AI practices

Module 21: Prompt Engineering

  • Introduction to Prompt Engineering
  • Structure and Elements of Prompts
  • Zero-shot Prompting
  • One-shot Prompting
  • Few-shot Prompting
  • Instruction Tuning Basics
  • Prompt Testing and Evaluation
  • Prompt Pitfalls and Debugging
  • Prompts for Different NLP Tasks (Q&A, Summarization, Classification)
  • Understanding Model Behavior with Prompt Variation

Module 22: Advanced Prompting Techniques

  • Chain-of-Thought (CoT) Prompting
  • Tree-of-Thought (ToT) Prompting
  • Self-Consistency Prompting
  • Generated Knowledge Prompting
  • Step-back Prompting
  • Least-to-Most Prompting
  • Adversarial Prompting & Prompt Injection
  • Auto-prompting techniques
  • Prompt testing and validation methodologies

Module 23: Working with LLM APIs

  • LLM Landscape: OpenAI, Anthropic, Gemini, Mistral API, LLaMA
  • Core Capabilities: Summarization, Q&A, Translation, Code Generation
  • Efficient Use of Tokens and Context Window
  • Calling Tools
  • Functions With LLMs
  • Deployment Considerations for Open-Source LLMs (Local, Cloud, Fine-Tuning)
  • Rate Limits, Retries, Logging
  • Understanding Cost, Latency, and Performance and Calculating via Code

Module 24: Building LLM Apps with LangChain &LlamaIndex

  • LangChain Overview
  • LlamaIndex Overview
  • Building With LangChain: Chains, Agents, Tools, Memory
  • Understanding LangChain Expression Language (LCEL)
  • Working With LlamaIndex: Document Ingestion, Index Building, Querying
  • Integrating LangChain and LlamaIndex: Common Patterns
  • Using External APIs and Tools as Agents
  • Enhancing Reliability: Caching, Retries, Observability
  • Debugging and Troubleshooting LLM Applications

Module 25: Developing RAG Systems

  • What is RAG and Why is it Important?
  • Addressing LLM limitations with RAG
  • The RAG Architecture: Retriever, Augmenter, Generator
  • DocumentLoaders
  • Embedding Models in RAG
  • Customizing Prompts for RAG
  • Advanced RAG Techniques: Re-ranking retrieved documents
  • Query Transformations
  • Hybrid Search
  • Parent Document Retriever and Self-Querying Retriever
  • Evaluating RAG Systems: Retrieval Metrics

Module 26: Vector Databases and Embeddings

  • What are Text Embeddings?
  • How LLMs and Embedding Models generate embeddings
  • Semantic Similarity and Vector Space
  • Introduction to Vector Databases
  • Key features: Indexing, Metadata Filtering, CRUD operations
  • ChromaDB: Local setup, Collections, Document and Embedding Storage
  • Pinecone: Cloud-native, Indexes, Namespaces, and Metadata filtering
  • Weaviate: Open-source, Vector-native, and Graph Capabilities
  • Other Vector Databases: FAISS, Milvus, Qdrant
  • Vector Indexing techniques
  • Data Modeling in Vector Databases
  • Updating and Deleting Vectors
  • Choosing the Right Embedding Model
  • Evaluation of Retrieval quality from Vector Databases

Module 27: Building End-to-End GenAI Applications

  • Architecting LLM-Powered Applications
  • Types of GenAI Apps: Chatbots, Copilots, Semantic Search / RAG Engines
  • Design Patterns: In-Context Learning vs RAG vs Tool-Use Agents
  • Stateless vs Stateful Agents
  • Modular Components: Embeddings, VectorDB, LLM, UI
  • Key Architectural Considerations: Latency, Cost, Privacy, Memory, Scalability
  • Building GenAI APIs with FastAPI
  • RESTful Endpoint Structure
  • Async vs Sync, CORS, Rate Limiting, API Security
  • Orchestration Tools: LangServe, Chainlit, Flowise
  • Cloud Deployment: GCP
  • Containerization and Environment Setup

Module 28: Evaluating GenAI Applications and Enterprise Use Cases

  • Evaluation Metrics: Faithfulness, Factuality, RAGAs, BLEU, ROUGE, MRR
  • Human and Automated Evaluation Loops
  • Logging, Tracing, and Observability Tools: LangSmith, PromptLayer, Arize
  • Prompt and Output Versioning
  • Chain Tracing and Failure Monitoring
  • Real-Time Feedback Collection
  • GenAI Use Cases: Customer Support, Legal, Healthcare, Retail, Finance
  • Contract Summarization
  • Legal Q&A Bots
  • Invoice Parsing with RAG
  • Product Search Applications
  • Domain Adaptation Strategies

Module 29: Multimodal LLMs

  • Introduction to Multimodal LLMs (GPT-4V, LLaVA, Gemini)
  • How multimodal models process different data types
  • Use Cases: Image Captioning, Visual Q&A, Video Summarization
  • Working with Vision-Language Models (VLMs): Image inputs, text outputs
  • Image Loaders in LangChain/LlamaIndex
  • Simple visual Q&A applications
  • Audio Processing with LLMs: Speech-to-Text (ASR)
  • Text-to-Speech (TTS) integration
  • Video understanding with LLMs
  • Challenges in Multimodal AI
  • Ethical Considerations in Multimodal AI
  • Agent Frameworks (AutoGPT, CrewAI, LangGraph, MetaGPT)
  • ReAct and Plan-and-Act agent strategies
  • Future Direction

Module 30: LLMOps and Evaluation

  • Introduction to LLMOps: Managing the ML Lifecycle for Large Language Models
  • Introduction to Model Finetuning: When Prompt Engineering Isn’t Enough
  • Overview of Parameter-Efficient Finetuning (PEFT)
  • LoRA (Low-Rank Adaptation): Concept and Architecture
  • QLoRA: Quantized LoRA for Finetuning Large Models Efficiently
  • Adapter Tuning: Modular and Lightweight Finetuning
  • Comparing Finetuning Techniques: Full vs. LoRA vs. QLoRA vs. Adapters
  • Selecting the Right Finetuning Strategy Based on Task and Resources
  • Introduction to Hugging Face Transformers and PEFT Library
  • Setting Up a Finetuning Environment with Google Colab
  • Preparing Custom Datasets for Instruction Tuning and Task Adaptation
  • Monitoring Training Metrics and Evaluating Fine-tuned Models
  • Use Cases: Domain Adaptation, Instruction Tuning, Sentiment Customization

Module 31: Agentic AI

  • Agentic AI Introduction
  • AI Agents vs. Agentic AI
  • Comparison: Agentic AI, Generative AI, and Traditional AI
  • Agentic AI Building Blocks
  • Autonomous Agents
  • Human in the Loops Systems
  • Single and Multi Agent AI Systems
  • Agentic AI Frameworks Overview
  • Ethical and Responsible AI
  • Agentic AI Best Practices

Module 32: Agentic AI: Architectures and Design Patterns

  • Agentic AI Introduction
  • AI Agents vs. Agentic AI
  • Comparison: Agentic AI, Generative AI, and Traditional AI
  • Agentic AI Building Blocks
  • Autonomous Agents
  • Human in the Loops Systems
  • Single and Multi Agent AI Systems
  • Agentic AI Frameworks Overview
  • Ethical and Responsible AI
  • Agentic AI Best Practices

Module 33: Working with LangChain and LCEL Topics

  • Components and Modules
  • Data Ingestion and Document Loaders
  • Text Splitting
  • Embeddings
  • Integration with Vector Databases
  • Introduction to Langchain Expression Language (LCEL)
  • Runnables
  • Chains
  • Building and Deploying with LCEL
  • Deployment with Langserve

Module 34: Building AI Agents with LangGraph Topics

  • Introduction to LangGraph
  • State and Memory
  • State Schema
  • State Reducer
  • Multiple Schemas
  • Trim and Filter Messages
  • Memory and External Memory
  • UX and Human-in-the-Loop (HITL)
  • Building Agent with LangGraph
  • Long Term Memory
  • Short vs. Long Term Memory
  • Memory Schema
  • Deployment

Module 35: Implementing Agentic RAG

  • What is Agentic RAG?\
  • Agentic RAG vs. Traditional RAG
  • Agentic RAG Architecture and Components
  • Understanding Adaptive RAG
  • Variants of Agentic RAG
  • Applications of Agentic RAG
  • Agentic RAG with Llamaindex
  • Agentic RAG with Cohere

Module 36: Developing AI Agents with Phidata

  • Agents
  • Models
  • Tools
  • Knowledge
  • Chunking
  • Vector DB
  • Storage
  • Embeddings
  • Workflows
  • Developing Agents with Phidata

Module 37: Multi Agent Systems with LangGraph CrewAI

  • Multi Agent Systems
  • Multi Agent Workflows
  • Collaborative Multi Agents
  • Multi Agent Designs
  • Multi Agent Workflow with LangGraph
  • CrewAI Introduction
  • CrewAI Components
  • Setting up CrewAI environment
  • Building Agents with CrewAI

Module 38: Advanced Agent Development with Autogen

  • Autogen Introduction
  • Salient Features
  • Roles and Conversations
  • Chat Terminations
  • Human-in-the-Loop
  • Code Executor
  • Tool Use
  • Conversation Patterns
  • Developing Autogen-powered Agents
  • Deployment and Monitoring

Module 39: AI Agent Observability and AgentOPs

  • AI Agent Observability and AgentOPs
  • Langfuse Dashboard
  • Tracing
  • Evaluation
  • Managing Prompts
  • Experimentation
  • AI Observability with Langsmith
  • Setting up Langsmith
  • Managing Workflows with Langsmith
  • AgentOps Practical Implementation

Module 40: Building AI Agents with No/Low- Code Tools

  • Introduction to No-Code/Low-Code AI
  • Benefits and Challenges of No-Code AI Development
  • Key Components of No-Code AI Platforms
  • Building AI Workflows Without Coding
  • Designing AI Agents with Drag-and-Drop Interfaces
  • Integrating No-Code AI with Existing Systems
  • Customizing and Fine-Tuning AI Solutions
  • Optimizing Performance and Efficiency in No-Code AI
  • Security and Compliance Considerations in No-Code AI
  • Best Practices for Deploying No-Code AI Solutions
  • Real-World Use Cases and Applications of No-Code AI
  • calling and Future Trends in No-Code AI