Courses Offered: SCJP SCWCD Design patterns EJB CORE JAVA AJAX Adv. Java XML STRUTS Web services SPRING HIBERNATE  

       

FULL STACK DATA SCIENCE Course Details
 

Subscribe and Access : 5200+ FREE Videos and 21+ Subjects Like CRT, SoftSkills, JAVA, Hadoop, Microsoft .NET, Testing Tools etc..

Batch Date: July 2nd @6:00AM

Faculty: Mr. Arjun Srikanth
(16+ Yrs of Exp,..)

Duration: 3 Months 15 Days

Venue :
DURGA SOFTWARE SOLUTIONS,
Flat No : 202, 2nd Floor,
HUDA Maitrivanam,
Ameerpet, Hyderabad - 500038

Ph.No: +91 - 9246212143, 80 96 96 96 96


Syllabus:

Full Stack Data Science Program
in Artificial Intelligence, Machine Learning and Deep Learning

Data Science Road Map:

  • What is Data science
  • Internal Mechanism of Data Science
  • What is Artificial Intelligence
  • What is Machine Learning
  • What is Deep Learning
  • What is Different Between AI, ML and DL

Life Cycle of Data Science:

  • Business Requirement
  • Data Wrangling
  • Data Mining
  • Data Cleansing

Python:

  • Python Installation
  • Jupyter Notebook Tutorial
  • Variable
  • Function
  • Lambda Expression
  • Loops
  • List
  • Tuple
  • Set
  • Dictionary

Numpy:

  • What is Numpy
  • History of NumPy
  • What is Ndarray
  • Creating Numpy Array
  • Array Function
  • Creating Numpy Array
  • Numerical
  • Homogenous
  • Diagonal
  • Random Numbers
  • Array Attributes
  • Creating Multi- Dimensional Array
  • Extracting Data from Arrays
  • Using Indexing
  • Using Slicing
  • Boolean Indexing
  • Numpy Functions

Pandas:

  • What is Data Manipulation
  • What is Pandas
  • History of Pandas
  • What is Data Structure
  • Pandas Data Structure
  • Series & DataFrame
  • Creating Series
  • Creating DataFrame
  • Extracting Data
  • Manipulation of Data
  • Inserting Columns & Rows
  • Changing Columns & Rows
  • Deleting column / rows
  • Re-indexing Options
  • Customization
  • Indexing & Selecting
  • Date Functionality
  • Identifying Outlier
  • Replace NaN using FillNa,
  • Deleting using Drop, DropNa,
  • Joining using Concatenate and Merge
  • Group by, Pivot Table and Cross Tab

Feature Engineering:

  • Data Acquisition
  • Feature scaling
  • NaN Identification
  • Error Detection
  • Encoding Techniques
  • Data Separation
  • Imbalance Dataset
  • Data Splitting
  • Model Building
  • Model Training
  • Model Testing

Statistics:

  • What is Statistics
  • Types of Statistics
  • Descriptive Statistics
  • Inferential Statistics

Data Visualization:

Matplotlib:

  • Bar Graph.
  • Pie Chart.
  • Box Plot.
  • Histogram.
  • Line Chart
  • Subplots
  • Scatter Plot

Seaborn:

  • Count plot
  • Heatmap
  • Scatter plot
  • Pair plot
  • Violin Plot
  • Box plot

Machine Learning:

SUPERVISED LEARNING CLASSIFICATION

  • Logistic Regression
  • Decision Tree
  • SVC
  • Naive Bayes
  • KNN
  • Ensemble
    • Random Forest
    • Ada Boost
    • Gradient Boost
    • XG Boost
REGRESSION
  • Linear Regression
  • Multi Linear Reg
  • Polynomial Reg
  • Lasso Regression
  • Ridge Regression
  • Decision Tree
  • SVM -- SVR
  • Ensemble Method

Deep Learning:

  • What is Deep Learning
  • Machine Learning VS Deep Learning
  • Biological Neural Network
  • Deep Learning Application
  • Artificial Neural Network (ANN)
  • Convolutional Neural Network (CNN)
  • Recurrent Neural Network (RNN)
TENSOR FLOW
  • What is TensorFlow
  • What are Tensors
  • Tensor Graph
  • TensorFlow Perceptron
  • Single Layer Perceptron
  • Hidden Layer Perceptron
  • Multi-Layer Perceptron

· KERAS

  • What is Keras
  • Keras Model
  • Sequential Model
  • Functional Model
  • Keras Layers
    • Input Layer
    • Output Layer
ACTIVATION FUNCTION:
  • What is Activation Function
  • Types of Activation Function
    • Relu, Leaky Relu
    • Tan
    • Sigmoid & Softmax
  • What is Optimizer
  • What is Loss function
    • Dense Layer
    • Flatten Layer
    • Convolutional Layer
    • Pooling Layer
    • Recurrent Layer
    • Embedding Layer

ARTIFICIAL NEURAL NETWORK

  • The Detailed ANN
  • How do ANNs work
  • Gradient Descent
  • Stochastic Gradient Descent
  • Forward Propagation
  • Backpropagation
  • limitations of a Single Perceptron
  • Neural Networks in Detail
  • Understand Backpropagation

NATURAL LANGUAGE PROCESSING

  • Natural Language Processing?
  • Tokenization
  • Stemming
  • Lemmatization
  • Stop Words
  • Phrase Matching
  • Vocabulary
  • Part of Speech Tagging
  • Named Entity Recognition
  • Part of Speech Tagging
  • Named Entity Recognition
  • Sentence Segmentation
  • Sentiment Analysis with NLTK
  • Text Classification

COMPUTER VISION (Using CNN)

  • What is Computer Vision
  • Convolutional Neural Network
  • Why CNN
  • Application on CNN
  • Convolutional Layers
  • Pooling Layers
  • Batch Normalization Layers
  • Dropout Layers
  • Recurrent Neural Network
    • LSTM
    • RNN Layers
    • Network Layer
    • Embedded Layer